Indian Architect & Builder

VOL 2 NO 4 DECEMBER 1988

CONTENTS

News 9
Letters 13
Architectural Focus 15
Integrated Rhythms – Sarayu Ahuja 18
Sarayu Ahuja talks to Architect Anant Raje
Cohesion and Continuity – Anant Raje 26
The Indian Institute of Forest Management.
Construction Briefs 37
Reaching for the sky – C M Dordi, X Antia, S Pathak
India’s tallest concrete structure 40
Medibundi – Christopher A Scott
Water conservation in arid zones – a living tradition 54
Maintenance – Floor Care – A C Panchdari
Removing stains from flooring 59
Bridges: Checking Out – Badar Bakhri
Bridge testing in Canada. 63
Roads: Going the Geosynthetic Way – J N Mandal
Geosynthetics for better roads 69
Rustic Reminiscence – Neena Sethi
A low-budget farm house designed by Architect Sharad Sheth 74
New Products 81
System 5 – P J Pinto
The vacuum dewatering process 85
Status Statements – Prakash Rao
Interiors by Architect Farouk Faquih 90
COVEN: The Indian Institute of Forest Management, Bhopal
Photograph: Courtesy Anant Raje

R V PANDIT
Publisher

RAJUL SHAH
Managing Editor

SISIR DATTA
Art Director

PRAKASH RAO
VEENA MATTHEWS
Associate Editors

SOUTHWESTAL
SARAYU AHUJA
Consulting Editors

SURESH HAJARE
Layout Artist

V S KULKARNI
Draftsman

LOPA MUTHANA
Advertising Manager

Advertising Sales Offices
BOMBAY: I. Muthana, Business Press Pvt Ltd, Maker Tower F,
18th Floor, Cuffe Parade, Bombay 400 005.
Tel: 213545/213752/215056, Telex: 011-3602 BPIL IN

AHMEDABAD: A K Narayarasan, 3 Sadhana Colony,
Stadium Road, Ahmedabad 380 014,
Tel: 420136, Telex: 12-6014 BPIL IN

BANGALORE: Aij Rao, Business Press Pvt Ltd,
17/1 Dickenson Road, Bangalore 560 001.
Tel: 562074/562569, Telex: 9845-6179 TMEP IN/9845-6047 TCA IN

CALCUTTA: A K Mitra, Business Press Pvt Ltd,
4/1-A, Nirmal Chandra Street, Calcutta 700 012,
Tel: 292069/292650, Telex: (Consumer No. IT 363)
31-7622 IN, TCMIA 15 F 5/21-7625 IN, TCMIA 15 F 6

COCHIN: Muruthi Mammen, Business Press Pvt Ltd,
41/1096-D, Parameera Temple Road, Ernakulam North,
Cochin 682 018, Tel: 301214

MADRAS: K Devanji, Business Press Pvt Ltd,
Sujatha Buildings, 1st Floor, 13-3 Montith Road, Egmore,
Madras 600 008, Tel: 886234, Telex: 041-7149 NLMS IN

NEW DELHI: N Das, Business Press Pvt Ltd, Room No. 102,
INS Building Annex, Rafi Marg, New Delhi 110 001,
Tel: 358541 Extn: 284, Telex: 51-6341 TBE IN

SECUNDERABAD: Noel Augustine, Business Press Pvt Ltd,
Sneh Bhavan, 1-4/4-4, 1st Floor, Pender Chest Road,
Secunderabad 500 005, Tel: 941975, Telex: 4025-6333 FCO IN

Cables: IMPRINTMAG in each city.

For editorial and accounts correspondence, for change of
address and circulation inquiries write to:
INDIAN ARCHITECT & BUILDER Business Press Pvt Ltd,
Maker Tower F, 18th Floor, Cuffe Parade, Bombay 400 005.
Tel: 213545/213752/215056, Telex: 011-3602 BPIL IN

Please allow at least 30 days for the change of address to take effect.
Both the old and new addresses should be given.

INDIAN ARCHITECT & BUILDER is published monthly with
the publishing office located at Surya Mahal, 2nd Floor, 3 Burjorji Bhargava Marg, Fort, Bombay 400 001.

India & 1980 Business Press Pvt Ltd. Reproduction in any
manner, in whole or part, in English or any other language, is
strictly prohibited.

INDIAN ARCHITECT & BUILDER does not accept responsibility
for contributions in the mail.

The subscription rate for the INDIAN ARCHITECT & BUILDER
is Rs.150 a year, Rs.285 for two years and Rs.405 for three years.
The overseas subscription rate is Rs150 a year.

DISTRIBUTED BY: India Book House.

Indian Architect & Builder is
generated with the Registrar of newspapers for India
under RN 46976/87 © 1988

Edited by R V Pandit.

Published for Business Press
Pvt Ltd, Surya Mahal, 2nd
Floor, 3 Burjorji Bhargava
Marg, Fort, Bombay 400 001.
by R V Pandit and printed by
him at Army and Navy Press,
Plot 11& 12, Mathur MCA, Street,
No 18 Cuffe Parade Road.
Amberl, Bombay 400 005
by photo-offset.

Medbundi

Christopher A Scott
Watershed Consultant, Civil Engineer
Udaipur

Is it possible to alleviate the acute water shortage faced by the inhabitants of the globe's arid and semi-arid areas? Through careful soil and water management, planned agriculture and animal husbandry, and water-saving industrial production, this goal can be realized. Though water wastage is an integral part of the problem, 'harvesting' and storage systems, based on sound ecological practices, need adequate attention as well.

Imagine successfully impounding raging torrents in watersheds, which receive the lion's share of annual precipitation, in short intense cloudbursts during the brief monsoon. By establishing a system of water harvesting structures in gullies that empty into a larger basin, runoff velocities and erosivity can be significantly reduced. Larger watersheds may have suitable locations for the construction of small dams. Yet, being able to store vast volumes of runoff in regions where the total evaporation exceeds precipitation would be ideal. By recharging groundwater, underground reservoirs are created, and this water may subsequently be utilized through wells.

The scale of these operations often exceeds the financial resources of the rural poor, making the involvement of government and non-government organizations, assisting the predominantly tribal, rural population, implement water harvesting schemes. Seva Mandir, one such registered, secular voluntary organization, working in the Aravalli Hills around Udaipur, encourages village groups to undertake treatment of entire watersheds with soil-water conservation (SWC) and reforestation.

The southern Aravalis receive an annual precipitation of 620mm with over 500mm falling during three monsoon months. Hills, once covered by vast forest tracts, now stand denuded, mere rocky outcrops with parched sandy steppes. The rocks consist mainly of quartzite and feldspar, with weathered schists, while the bedrock throughout the region is no more than 2m deep. Topsoils, rich in organic matter and the region's abundant mineral wealth, have been eroded from the hills and constitute agricultural holdings in low-lying areas. Local dryland farming is entirely on a subsistence basis. The drought conditions of 1985-88 brought on famine, which prompted the generation of relief work to provide wages to the badly-hit rural poor. Although there are certain interesting options, few relief projects meaningfully help in the long-term mitigation of the causes of famine.

Small-scale efforts, often with individual families, strengthen the community's access to its primary resources: water, the
A small storage reservoir contained by an earthen anicut.

Earth, and forests. Tribal settlement patterns among the Bhils consist of individual hamlets located on hilllocks. Private landholdings are generally long, narrow strips including hillslopes, grassland and gently sloping fields lower down.

First hand knowledge surpasses technical analysis

As follow-up to the drought relief activities of the pre-monsoon period, villagers are
actively implementing reforestation and soil water conservation (SWC) activities, with the alternatives they devise. Their first-hand knowledge of flows, velocities and sedimentation surpasses any hydrological analysis that can technically be made. What eventually emerges from the drawn-out but involved planning and implementation stages is an incredible nexus of hillside trenches, terraces, field bunds, diversion channels, outlets, and spillways. The primary technical inputs in this experiment are the optimization of effort and cost, structural control, material and labour management of larger works, for instance, small dams, also termed anicuts.

The physical components of the system are sized according to local conditions. Starting from the highest point in the water shed, alternating contour trenches collect runoff of 3m x 6m micro-catchments. Trenches are designed to fill at least once each season. Half a metre downslope from each trench are two saplings, of species ranging from flame of the forest (kharak) to acacia nilotica (babool) which are selected for their suitability to different soils. Soil moisture levels remain acceptable for eight months, though root stress, termites and grazing take their toll.

Conserving soil

Despite the contouring, gully ing occurs in the rains when the nallahs swell, flowing full with red lateritic sediments. Velocities and sediment transport are alarming. Stone gully plugs squat heavily to calm erosive flows, so causing sedimentation and further reducing transport. Innovations on older techniques include the introduction of spillways and flat stone aprons. Larger nallahs are blocked with structures of dry stone masonry; against this, earth soling is piled, so that natural levelling might result in small fields.

Where watercourses reach the flat land, long bunds are levelled. Debris gets deposited while silt and water are spread across the field. Excess flow can be routed around and down into the ravine, reducing the sheet erosion of the agricultural soil. Care is taken to protect the nallah banks from erosive flow.

Irrigation

To procure good yields of the local varieties of maize, dry paddy, millet and sorghum, seed
should be sown in standing water on land already saturated and ploughed. Water is retained by an extensive system of field bunds, *medbundt*. In order that different crops germinate, the soil must remain saturated up to 72 hours. The water requirements of species vary, hence the depths of water ponded in the fields must be controlled. Dry paddy requires knee-deep water for three days, while maize can survive with ankle-deep water for one day.

Two variations of field bunds are now in use. Basic safety precautions are observed. This includes ensuring the slope stability of earthen embankments, and that stone gully plugs and walls do not overturn or breakdown. Where possible, vegetative cover reinforces the packed earth of the embankments. By increasing the self-weight of earth bunds, stone cores provide foundation and reduce the chance of slippage.

Mini dams

At the downstream end of the watershed, appropriate locations are selected for the construction of small dams. The primary function of these anicuts is groundwater recharge. Several wells on small holdings located some distance from the reservoir still benefit from an increased groundwater level that the anicut effects. Waterlifting devices, like the Persian Wheel, *rahat*, and skin bags, *chadas*, make use of draft power to provide protective irrigation. Cattle abound, though they are largely unproductive for lack of adequate fodder and clean water. Bovine mortality reached 70 percent in some areas during the drought.

Depending on the watershed size and characteristics, anicuts are of stone masonry with lime or cement mortar, or of rammed earth. As local soils have a high sand content and little silt and clay, earthen dams contain stone masonry core walls to preclude excessive seepage and the danger of piping. The core is sunk into the foundation at the centre of the embankment’s cross-section. Built to a height where the phreatic surface of a reservoir is expected to intersect the core, the stone masonry in lime mortar walls reduce seepage. Lining, using agriflms, is intended for seepage control from the beds of those reservoirs not critical for well recharge, where the main objective is to provide drinking water for animals and protective irrigation.

The various physical components of a single watershed project must, as a system, be able to withstand the changes endemic to community-based work. Without popular support the long-term sustainability of basic resource management is untenable. Yet, if the model is dynamic and wins approval, its replicability in other watersheds is likely. This has begun in the Aravallis.